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SUMMARY

Association studies in environmental statistics often involve exposure and outcome data that are mis-
aligned in space. A common strategy is to employ a spatial model such as universal kriging to predict
exposures at locations with outcome data and then estimate a regression parameter of interest using the
predicted exposures. This results in measurement error because the predicted exposures do not correspond
exactly to the true values. We characterize the measurement error by decomposing it into Berkson-like
and classical-like components. One correction approach is the parametric bootstrap, which is effective
but computationally intensive since it requires solving a nonlinear optimization problem for the expo-
sure model parameters in each bootstrap sample. We propose a less computationally intensive alternative
termed the “parameter bootstrap” that only requires solving one nonlinear optimization problem, and we
also compare bootstrap methods to other recently proposed methods. We illustrate our methodology in
simulations and with publicly available data from the Environmental Protection Agency.

Keywords: Environmental epidemiology; Environmental statistics; Exposure modeling; Kriging; Measurement error.

1. INTRODUCTION

A challenge for association studies in environmental statistics is that we cannot directly measure the expo-
sure at every location where there is outcome data. Modern Geographic Information System (GIS) tech-
nology makes it feasible to sample environmental exposures and then to predict exposures at unmonitored
locations using a statistical model such as universal kriging that exploits dependence on GIS covariates
and incorporates spatial smoothing (Cressie, 1993). The overall strategy is to use predicted exposures in
place of the true exposures at locations with outcome data in order to estimate the parameter of interest in
a regression model. The problem that we address in this paper is how to ensure valid inference in light of
the resulting measurement error.

An example application in environmental epidemiology is evaluating the relationship between expo-
sure to ambient air pollution and adverse health outcomes. Many studies have documented adverse effects
of air pollution (e.g.Dockeryand others, 1993; Sametand others, 2000; Popeand others, 2002), and
recent studies emphasize the importance of using predicted individual air pollution exposures to account
for spatial variability within urban areas (Jerrettand others, 2005b; Kunzli and others, 2005; Gryparis
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and others, 2007; Szpiroand others, 2010). Other environmental applications that do not involve human
health effects are analogous from a statistical perspective. An example that we will return to later in this
paper involves assessing the relationship between stream water quality and nearby watershed land cover
(Madsenand others, 2008; Herlihy and others, 1998).

Various methods have been employed for predicting exposures, including nearest neighbor interpola-
tion (Miller and others, 2007), regression based on GIS covariates (Brauerand others, 2003; Jerrettand
others, 2005a), interpolation by a geostatistical method such as kriging (Jerrettand others, 2005b; Kunzli
and others, 2005), and semi-parametric smoothing (Gryparisand others, 2007; Kunzli and others, 2005).
All these methods result in measurement error that does not fit into the standard categories of classical or
Berkson error (Carrolland others, 2006). In this paper, we focus on universal kriging.

Kim and others(2009) have shown that using predicted exposures from kriging performs better than
nearest neighbor interpolation but significant errors may remain resulting in confidence intervals that do
not provide correct coverage.Gryparisand others(2009) review the relevant measurement error literature
and compare several correction strategies in a simulation study, andMadsenand others(2008) apply a
version of the parametric bootstrap to obtain corrected standard errors (SEs).

The parametric bootstrap is effective, but it is computationally intensive since it requires solving a
nonlinear optimization problem to estimate the exposure model parameters in each bootstrap sample.
For a universal kriging exposure model with 450 monitors (as in the examples considered here), each
nonlinear optimization takes 30–60 s on an Intel Xeon processor running at 2.33 GHz, so a parametric
bootstrap with only 100 samples would take approximately 1 h. This is uncomfortably long for routine
usage, but it is feasible if the bootstrap is employed judiciously. If we consider, instead, a more complex
spatiotemporal model of the kind being used in modern air pollution studies (Szpiroand others, 2010),
the time required for a single optimization is an hour or more, so a full parametric bootstrap is essentially
impractical unless its use is restricted to a very limited number of definitive analyses.

We describe a new method termed the “parameter bootstrap” that is a less computationally demanding
approximation to the parametric bootstrap. The parameter bootstrap is consistent with a decomposition of
the measurement error into 2 approximately independent components, one of which is similar to Berkson
error (“Berkson-like”) and the other of which is similar to classical measurement error (“classical-like”).
We develop our methodology in a setting where we use universal kriging to predict the exposure and
where we model the association of interest with linear regression, including the possibility of spatially
correlated residuals. The methodology extends easily to more complex spatiotemporal exposure models
that generalize universal kriging (Banerjeeand others, 2004; Szpiroand others, 2010).

In Section2, we introduce notation and formally set out the problem. In Section3, we characterize the
measurement error by decomposing it into Berkson-like and classical-like components, and in Section4,
we define the parametric and parameter bootstraps and briefly review 2 alternative strategies that have been
proposed in recently published papers. In Section5, we illustrate our methodology in a simulation study
and compare it to other methods, and in Section6, we consider an example with publicly available stream
data from the Environmental Protection Agency (EPA). We conclude in Section7 with a discussion.

2. NOTATION AND PROBLEM SETUP

Consider an association study with theN × 1 vector of observed outcomesY, N × 1 vector of exposures
X, andN × m matrix of covariatesZ. Assume a linear regression model

Y = β0 + XβX + ZβZ + ε, (2.1)

with regression coefficient of interestβX . Assume thatε is an N × 1 random vector distributed as
N(0, 6ε(θε)), for a positive-definite matrix function6ε(∙) and unknown parameterθε.
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Inference forβX would be straightforward ifX, Y, andZ were all observed. We would estimateβ̂X by
ordinary least squares (OLS) and then estimateθ̂ε from the residuals and use a sandwich-based SE (Liang
and Zeger, 1986). If the ε are independent, and we estimateθ̂ε by the method-of-moments, the sandwich
form reduces to the classical SE estimate.

We are interested in the situation whereY andZ are observed, but instead ofX we observe theN∗ ×1
vectorX∗ of exposures at different locations.N∗ is the number of exposure monitors. Assume thatX and
X∗ are jointly distributed as (

X
X∗

)
=
(

S
S∗

)
α +

(
η
η∗

)
. (2.2)

In this expression,S andS∗ are knownN × k and N∗ × k dimensional matrices of GIS covariates,
α is an unknownk × 1 vector of coefficients, and

(
η
η∗

)
∼ N

(
0, 6(ηη∗)(θη)

)
, (2.3)

independent ofε, for a positive-definite matrix function6(ηη∗)(∙) and unknown parameterθη. It is useful
to introduce the decomposition

6(ηη∗)(∙) =
(

6η(∙) 6ηη∗(∙)
6η∗η(∙) 6η∗(∙)

)
.

Universal kriging is a special case ifθη comprises the range, partial sill, and nugget parameters from
a geostatistical model (Cressie, 1993).

Although the exposureX is not observed directly, we can exploit the observed valuesX∗ and the
spatial model in (2.2) to estimateβ̂X as follows. First, we estimate the exposure model parametersα̂ and
θ̂η based onX∗ by maximum likelihood or another nonlinear optimization approach, and then we define
the estimated exposure by

W = E(X|X∗; α̂, θ̂η)

= 8(X∗, α̂, θ̂η), (2.4)

where
8(X∗, α̂, θ̂η) = Sα̂ +6ηη∗(θ̂η)6

−1
η∗ (θ̂η)(X

∗ − S∗α̂).

Since we are interested in frequentist sampling properties of an estimator forβX , we take care to specify
the assumed data-generating mechanism. All the geographic locations are fixed and known, as are the
corresponding GIS covariatesS andS∗ and any covariatesZ in the outcome model. The regression co-
efficientsβ0, βX , βZ , andα and variance parametersθε andθη are all fixed but unknown. A realization
from the data-generating mechanism is obtained by drawing from the joint distribution ofε, η, andη∗.

3. MEASUREMENT ERROR

If we ignore the measurement error from usingW in place ofX, we can derive näıve SEs by the procedure
described at the beginning of Section2. However, these SEs are based on the assumption that all sampling
variability in β̂X is induced byε, and they ignore the additional sampling variability fromU = X − W
that is induced byη andη∗. Therefore, näıve SEs will typically not estimate the true sampling variability
of β̂X . In addition to altering the SEs, the measurement error may introduce bias.

We decompose the measurement error into 2 components

U = (X − E(X|X∗;α, θη))+ (E(X|X∗;α, θη)− E(X|X∗; α̂, θ̂η))

= UBL + UCL,
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where the Berkson-like component is

UBL = X − E(X|X∗;α, θη), (3.1)

and the classical-like component is

UCL = E(X|X∗;α, θη)− E(X|X∗; α̂, θ̂η).

The Berkson-like componentUBL accounts for variability fromη andη∗, conditional on known exposure
model parameters, and the classical-like componentUCL incorporates additional variability fromη∗ in
estimating the exposure model parameters. Both of these components change the sampling variance of
β̂X , and the classical-like component can also introduce bias.

3.1 Berkson-like component of the error

Assume that the exposure model parametersα andθη are known so thatUBL is the only source of mea-
surement error. A primary feature of Berkson error is that it has mean zero conditional on the estimated
exposureW (Carrolland others, 2006, p. 9). With known exposure model parameters, it is easy to see that
this holds forUBL

E(UBL |W) = E(E(UBL |W)|X∗)

= E(UBL |X∗)

= E(X − E(X|X∗;α, θη)|X
∗)

= 0.

The second line holds sinceW is deterministic conditional onX∗, the third line is the definition ofUBL,
and the final line holds sinceα andθη are the parameters in the data-generating mechanism forX.

Since we can rewrite (2.1) in the form

Y = β0 + WβX + ZβZ + UBLβX + ε,

it is easy to see that̂βX derived by OLS withW in place ofX is unbiased for estimatingβX . We verify
this by conditioning onW, exploiting the fact thatE(UBL |W) = 0, and then taking the expectation ofβ̂X

over the sampling distribution ofW. As in the case of Berkson error, the effect ofUBL is to makeW less
variable than the true exposureX, effectively adding to the variance of the noise in the outcome model
and resulting in increased variability ofβ̂X .

It is tempting to carry the Berkson analogy further and argue that we can derive valid SEs by account-
ing for the correlation in the new noise termε′ = UBLβX + ε, using either generalized least squares
or the sandwich estimator, as would be appropriate for Berkson error with a nondiagonal covariance
(Gryparisand others, 2009; Szpiroand others, 2008; Carroll and others, 2006, p. 90). This reasoning is
not completely correct, however, because it is based on treatingW as fixed.

3.2 Classical-like component of the error

A primary feature of classical measurement error is that it increases the variability ofW relative toX,
introducing variation that is not correlated with the outcomeY (Carroll and others, 2006, p. 28).UCL is
analogous since it comprises the error from estimating the exposure model parameters, which introduces
variability that is not informative forY. Strictly speaking,UCL is not independent ofY sinceα̂ and θ̂η
are derived fromX∗ which is correlated withX. It is also not independent across locations. Therefore,
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we emphasize thatUCL is similar to classical measurement error but also distinct in important ways, so
we cannot rely on standard measurement error correction techniques like regression calibration.

Our simulation results in Section5 suggest that the dominant effect ofUCL is to increase the sampling
variability of β̂X . The bias in our examples is relatively small, but it has some interesting features and for
completeness we illustrate bias correction using bootstrap methods and discuss the theoretical properties
of bias from this form of classical-like error in the Online Supplement 1 (see supplementary material
available atBiostatisticsonline). One interesting finding is that the bias can be away from the null, rather
than toward the null as in the case of standard classical measurement error.

4. CORRECTION METHODS

4.1 Parametric bootstrap

A natural, but computationally intensive, approach to estimating SEs and correcting bias is the parametric
bootstrap (Davison and Hinkley, 1997; Madsenand others, 2008). The parameter estimate of interest
β̂X is calculated as in Section2, and we wish to approximate its sampling distribution under the true
data-generating mechanism. We do this by simulating bootstrap samples under our best estimate of the
data-generating mechanism and calculating their empirical distribution. Given a set of observationsY and
X∗, the parametric bootstrap SE based onM bootstrap samples is derived as follows:

1. Estimate the exposure model parametersα̂ andθ̂η by nonlinear optimization in (2.2).
2. DeriveW from (2.4) and use it in place ofX in (2.1) to estimate the outcome model parametersβ̂0,
β̂X , β̂Z , andθ̂ε.

3. Repeat the steps below for eachj = 1, . . . ,M

(a) Simulate a new set of observationsYj and X∗
j based on the models in (2.1) and (2.2), using

α̂, θ̂η, β̂0, β̂X , β̂Z , andθ̂ε in place of the unknown true parameters.
(b) Estimate new exposure model parametersα̂ j andθ̂η, j by nonlinear optimization based on the

model in (2.2), usingX∗
j in place ofX∗.

(c) Plugα̂ j ,θ̂η, j , andX∗
j into (2.4) to deriveWj .

(d) Calculateβ̂X, j by OLS in (2.1), usingWj andYj in place ofX andY.

4. Calculate the parametric bootstrap SE as the empirical standard deviation of theβ̂X, j .

Note that in step 3(a), we simulateX j in order to obtainYj , but we do not useX j in the remainder of
the procedure. See the Online Supplement 3 (see supplementary material available atBiostatisticsonline)
for additional implementation details.

It is straightforward to usêβX, j to estimate and correct for bias rather than to derive SEs (Davison
and Hinkley, 1997). In principle, we need a nested double bootstrap to rigorously derive a bias-corrected
point estimates and corresponding SEs, but such a procedure can requireM2 bootstrap samples which is
very computationally intensive. Since the bias tends to be small in our examples, we approximate a nested
double bootstrap by applying a bias correction and estimating SEs based on the same set ofM bootstrap
samples, so our SEs do not include the additional variability from bias correction.

4.2 Parameter bootstrap

The idea of the parameter bootstrap is to decrease the computational burden by eliminating the nonlinear
optimization that is repeatedM times in step 3(b) above. This is feasible because we can typically obtain
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an estimate of the sampling distribution forα̂ andθ̂η in step (1) without much additional computation. The
procedure differs from the parametric bootstrap in the addition of step 1(a) and modification of step 3(b).

1. Estimate the exposure model parametersα̂ andθ̂η by nonlinear optimization in (2.2).

(a) Estimate a density function̂p(∙, ∙) corresponding to the sampling distribution ofα̂ andθ̂η.

2. DeriveW from (2.4) and use it in place ofX in (2.1) to estimate the outcome model parametersβ̂0,
β̂X , β̂Z , andθ̂ε.

3. Repeat the steps below for eachj = 1, . . . ,M

(a) Simulate a new set of observationsYj and X∗
j based on the models in (2.1) and (2.2), using

α̂, θ̂η, β̂0, β̂X , β̂Z , andθ̂ε in place of the unknown true parameters.
(b) Sampleα̂ j andθ̂η, j from the probability distribution defined bŷp(∙, ∙).
(c) Plugα̂ j ,θ̂η, j , andX∗

j into (2.4) to deriveWj .

(d) Calculateβ̂X, j by OLS in (2.1), usingWj andYj in place ofX andY.

4. Calculate the parameter bootstrap SE as the empirical standard deviation of theβ̂X, j .

As described in the Online Supplement 3 (see supplementary material available atBiostatisticonline),
our implementation of step 1(a) uses a Gaussian approximation centered at the maximum likelihood value
with covariance based on the estimated Hessian. In the Online Supplement 2 (see supplementary mate-
rial available atBiostatisticonline), we also describe assumptions that underlie validity of the parameter
bootstrap.

4.3 Partial parametric bootstrap

If we neglect the classical-like error, another alternative is to modify the parameter bootstrap by usingα̂
andθ̂η in each bootstrap sample instead of drawing new values from the estimated sampling distribution
as in step 3(b). We call this the partial parametric bootstrap. Since the partial parametric bootstrap only
accounts for Berkson-like error, we use it to estimate SEs but not for bias correction.

4.4 Other correction methods

Two alternative methods have been proposed in recently published papers. We describe these approaches
briefly and compare them to our proposed bootstrap methodology in the simulation and data examples
that follow. For more details, we refer an interested reader to the cited papers.

Gryparisand others(2009) andMadsenand others(2008) propose jointly modeling the exposure and
outcome data in order to estimateβ̂X . Since the joint model is multivariate normal given the parameters,
it is possible to write down a joint likelihood and estimate all the model parameters by either maximum
likelihood or Bayesian methods. We show results in a subset of our examples from a joint model fit by
maximum likelihood.

Another approach proposed byGryparisand others(2009) is to leave out a subset of the monitoring
data for out-of-sample validation and then to use regression calibration to derive bias-corrected effect
estimates. This approach is based on a classical measurement error model, which we and they have shown
does not hold. It also requires fitting the exposure model with only a subset of the available data. The
out-of-sample regression calibration algorithm given byGryparisand others(2009) is for uncorrelated
outcomes, and we implement their algorithm for a subset of our examples with uncorrelated outcomes
under the optimistic assumption that 50 additional validation monitors are available.
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5. SIMULATIONS

We conduct a simulation study based on the data we analyze below in Section6. We use the universal krig-
ing exposure model described above and allow for correlation in the outcome residuals. In a 300× 500
box, we randomly select locations forN∗ = 450 exposure monitors andN = 100 or 2000 outcome mea-
surements. Thex andy coordinates are covariates in the universal kriging exposure model with regression
coefficientsα = (−25.95,−0.0035, 0.00084)t , and the spatial correlation has an exponential variogram
structure with rangeφη = 24.13, partial sillψη = 3.76, and nuggetτη = 1.34 (Cressie, 1993).

The linear regression model for the outcome conditional onX is (2.1), with β0 = 5.06,β1 = −0.322,
and no additional covariatesZ. We consider the case of uncorrelated residualsε with varianceσ 2

ε = 0.76,
and we also consider the case of correlated residualsε following an exponential variogram structure with
rangeφε = 80.39, partial sillψε = 0.26, and nuggetτε = 0.50.

In Table1, we summarize the results for 2000 Monte Carlo simulations. Due to the computational
intensity of the parametric bootstrap, we restrict to 100 Monte Carlo runs for these results. Scatterplots
illustrating agreement between parameter bootstrap and parametric bootstrap SEs are shown in Figure1.
With uncorrelated outcomes, naı̈ve SEs that do not correct for measurement error are too small compared

Table 1. Simulation results for universal kriging exposure surface with rangeφη = 24.13. The columns
give the bias and standard deviation (SD) of the estimates, the mean and mode of the estimated SEs, and
the coverage for95% Wald confidence intervals (CIs). Results are based on2000Monte Carlo simula-
tions, except for the parametric bootstrap which is based on 100 Monte Carlo simulations and maximum

likelihood which is based on50Monte Carlosimulations

Bias SD SE (mean) SE (mode) 95% CI Coverage
N = 100
Independent outcomes

No correction −0.003 0.075 0.072 0.070 95
Partial parametric bootstrap −0.003 0.075 0.072 0.071 95
Parameter bootstrap 0.000 0.075 0.079 0.074 96
Parametric bootstrap −0.009 0.077 0.079 0.073 98
Regression calibration −0.012 0.104 0.102 0.084 95
Maximum likelihood −0.011 0.081 0.073 0.079 96

Correlated outcomes
No correction −0.004 0.093 0.097 0.085 95
Partial parametric bootstrap −0.004 0.093 0.101 0.097 95
Parameter bootstrap −0.001 0.093 0.105 0.099 96
Parametric bootstrap −0.008 0.099 0.106 0.107 94

N = 2000
Independent outcomes

No correction −0.002 0.027 0.016 0.016 78
Partial parametric bootstrap −0.002 0.027 0.023 0.023 91
Parameter bootstrap 0.001 0.027 0.028 0.027 96
Parametric bootstrap −0.002 0.027 0.029 0.027 97
Regression calibration −0.010 0.075 0.066 0.045 93
Maximum likelihood 0.000 0.021 0.022 0.022 96

Correlated outcomes
No correction −0.001 0.064 0.068 0.053 94
Partial parametric bootstrap −0.001 0.064 0.073 0.064 95
Parameter bootstrap 0.001 0.064 0.077 0.066 96
Parametric bootstrap −0.008 0.067 0.081 0.065 97
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Fig. 1. Scatterplot showing agreement between parametric bootstrap SEs and parameter bootstrap approximation,
based on 100 Monte Carlo simulations. Partial parametric bootstrap and uncorrected SEs are also included for
comparison.

to the observed sampling distribution ofβ̂X , resulting in less than nominal coverage for 95% confidence
intervals. The parameter bootstrap consistently gives near nominal confidence interval coverage. There is
some evidence of over-coverage with the parametric bootstrap, but this may be attributable to the smaller
number of simulations. In the correlated outcome model, the coverage for naı̈ve SEs is closer to nominal.
This is presumably because much of the Berkson-like error appears as additional correlated variability in
the outcome and is accounted for by the sandwich form.

We also show SEs calculated with the partial parametric bootstrap. In scenarios withN = 100,
the partial parametric bootstrap gives similar results to the parameter bootstrap. This suggests that the
Berkson-like component of measurement error dominates in this situation. ForN = 2000, however, the
partial parametric bootstrap SEs are significantly smaller, indicating that the classical-like component is
important in that setting.

The bias inβ̂X is a very small component of the total error in all scenarios, and it is partially corrected
by the parameter bootstrap. Due to the small number of parametric bootstrap simulations, it is difficult to
confirm that this approach provides an effective bias correction, but given the general agreement with the
parameter bootstrap we expect it to perform similarly.

We show results for out-of-sample regression calibration and joint maximum likelihood estimation
in Table1 for the cases with uncorrelated outcomes. We do not include cases with correlated outcomes
because the regression calibration method inGryparisand others(2009) is not applicable, and the max-
imum likelihood algorithm failed to consistently converge due to difficulty in identifying the covariance
structures between the exposure and outcome variables. Regression calibration results in reasonable cov-
erage probabilities but much larger SEs than the other methods. Joint maximum likelihood estimation also
gives nominal coverage probabilities, with somewhat smaller SEs than the 2-step methods with bootstrap
corrections. We restricted this part of the simulation study to 50 Monte Carlo simulations due to the com-
putational burden (it took on average 8 h to optimize the joint likelihood withN = 2000, compared to
less than 5 min for the parameter bootstrap).
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Table 2. Simulation results for misspecified variance models. All simulations are fit with an exponential
variogram model, but the data are generated according to either a Gaussian, spherical, or cubic model.
The columns give the bias and standard deviation (SD) of the estimates, the mean and mode of the esti-
mated SEs, and the coverage for95%Wald confidence intervals (CIs). Results are based on2000Monte
Carlo simulations, except for the parametric bootstrap which is based on100Monte Carlo simulations

and maximum likelihood which is based on50Monte Carlosimulations

Bias SD SE (mean) SE (mode) 95% CI Coverage
N = 2000
Independent outcomes

Gaussian variogram
No correction −0.013 0.021 0.014 0.014 74
Partial parametric bootstrap −0.013 0.021 0.020 0.019 90
Parameter bootstrap −0.011 0.022 0.024 0.022 95
Parametric bootstrap −0.012 0.021 0.023 0.022 95
Regression calibration −0.009 0.048 0.048 0.040 95
Maximum likelihood −0.002 0.017 0.017 0.017 94

Spherical variogram
No correction −0.008 0.026 0.016 0.016 77
Partial parametric bootstrap −0.008 0.026 0.022 0.022 91
Parameter bootstrap −0.005 0.026 0.028 0.025 96
Parametric bootstrap −0.007 0.025 0.028 0.026 98
Regression calibration −0.011 0.062 0.061 0.046 95
Maximum likelihood 0.000 0.019 0.020 0.020 96

Cubic variogram
No correction −0.016 0.024 0.015 0.015 71
Partial parametric bootstrap −0.016 0.024 0.021 0.021 88
Parameter bootstrap −0.013 0.025 0.030 0.025 96
Parametric bootstrap −0.014 0.023 0.026 0.025 94
Regression calibration −0.009 0.057 0.054 0.044 95
Maximum likelihood −0.003 0.017 0.018 0.018 96

Finally, in Table2, we illustrate the impact of misspecifying the spatial correlation in the exposure
model. Other types of model misspecification are also possible, but we focus on the spatial correlation
in the exposure since it is particularly difficult to know in advance. We consider Gaussian, spherical, and
cubic variogram models, but we assume an exponential model for the purposes of estimation. Ignoring
measurement error or using the partial parametric bootstrap results in less than nominal confidence interval
coverage. The parameter bootstrap and parametric bootstrap give nearly nominal coverage, as do out-of-
sample regression calibration and joint maximum likelihood fitting. As in the case of a correctly specified
model, regression calibration results in much larger SEs, while joint maximum likelihood gives somewhat
smaller standard errors than the bootstrap approaches (at significant computational cost). There is bias
that the bootstrap methods fail to correct, while maximum likelihood estimates are nearly unbiased.

6. EXAMPLE

The Environmental Monitoring and Assessment Program (EMAP) was conducted by the EPA from 1990–
2006 to advance the science of ecological risk assessment and improve the EPA’s ability to estimate
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current and future risks to the health of aquatic ecological resources (US EPA monitoring and assessment
program, 1999). Previous work has found that there is a strong relationship between local land use and
water quality in nearby streams (Herlihy and others, 1998). For example, a higher percentage of local
forestation has been found to be associated with improved stream water quality. FollowingMadsenand
others(2008), we consider forestation level (logit((0.98×%forestation)+1)) as the exposure and analyze
its association with chloride concentrations (log(μEq/L)), where elevated chloride concentrations are a
marker for poor stream water quality.

We use EMAP data from the Mid-Atlantic Highlands region of the eastern United States collected
during the years 1993–1996 (US EPA monitoring and assessment program, 1999). Where multiple mea-
surements are available from different times at the same location, we use the earliest time. The outcome
and the exposure are both available at a total 422 of these locations, so based on these locations, we can
estimate the coefficient in a linear model without measurement error. Allowing for spatially correlated out-
comes, we find a highly statistically significant negative association between local forestation and chloride
concentrations (̂βX = −0.346, SE= 0.025).

At an additional 157 locations, only the chloride concentrations are available. To assess the impact of
measurement error and our correction methods, we use a universal kriging model (with an exponential
variogram and latitude and longitude as covariates) to predict the exposure at these locations and re-
estimate the association using the predicted exposures and measured outcomes at 157 locations. The
exposure model parameter estimates areα̂ = (−28.91,−0.0037, 0.0012), rangeφ̂η = 13.92 km, partial
sill ψ̂η = 4.32, and nugget̂τη = 0.48. A map of the respective locations is shown in Figure2.

The results are shown in Table3. The uncorrected effect estimate is−0.390 with a SE of 0.105, which
is consistent with primarily Berkson-like measurement error since there is little change in the effect es-
timate compared to the case with no measurement error (only a small part of the increased SE can be
attributed to the smaller sample size of 157 instead of 422). The partial parametric bootstrap does not
change the estimated SE at all, which suggests that the Berkson-like error is nearly pure Berkson error.
The parameter bootstrap and parametric bootstrap increase the estimated SEs slightly (0.115 and 0.111,
respectively) and estimate little or no bias. Joint maximum likelihood optimization failed to converge
(even after trying 20 random initial conditions) due to difficulty in distinguishing between spatial corre-
lation in the measurement error and the outcome, indicating that joint modeling is not feasible for the
present example.

In conclusion, when we use predicted exposures at stream locations where the true exposures are
not available, we see statistically significant evidence of a negative association between local forestation
and stream water quality as measured by chloride concentrations. The SE is inflated by the presence of
measurement error, and the correct SE can be estimated at little additional computational cost by the
parameter bootstrap. It turns out that a naı̈ve analysis also gives nearly correct SEs, although we needed
to do the bootstrap analysis to verify this finding.

7. DISCUSSION

We have characterized the measurement error from using smoothing to predict exposures in environmental
statistics association studies when the exposure and outcome data are misaligned in space. The resulting
measurement error has a Berkson-like component from information lost in smoothing and a classical-like
component that is related to uncertainty associated with estimating the smoothing parameters.

The measurement error structure we have identified is complex because it is a mixture of 2 types of
error, neither one of which fits exactly into the traditional categories of Berkson or classical. Therefore,
standard measurement error correction methods are not appropriate. If we are willing to assume that
the exposure and outcome models are correctly specified, we can use a parametric bootstrap to estimate
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Fig. 2. EPA stream locations, for example, data analysis (N∗ = 422 sites with exposure and outcome data,N = 157
locations with outcome data only).

bias and standard errors. This requires that we be precise about the assumed data-generating mechanism
since the idea is to draw multiple samples from an approximation to the data-generating mechanism, with
parameters estimated from observed data. We have defined a data-generating mechanism that is consistent
with the geostatistical kriging model we use for smoothing. Although it is well known that geostatistical
methods are useful for interpolating physical processes that arise in environmental statistics, it is not
clear what real-world phenomenon the spatial random effect represents. A promising direction for future
research is to investigate the scientific validity of this and other possible data-generating mechanisms and
to characterize the implications for measurement error correction.

We propose the parameter bootstrap as a less computationally intensive approximation to the paramet-
ric bootstrap. The main assumption required for the parameter bootstrap is that the estimated
sampling distribution for the exposure model parameter estimates be a valid approximation to the true
sampling distribution. In general, this is true for sufficiently rich exposure data, but in some applications,
the available monitoring data are limited. As a computational tool, the parameter bootstrap is necessary
when estimating the exposure model parameters is computationally intensive, which occurs when there
is a relatively large amount of exposure data. Therefore, the choice between the parametric bootstrap
and the parameter bootstrap should be informed by the amount of exposure data available, considering
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Table 3. Results of estimating the relationship between the log-transformed chloride level (“outcome”)
and the logit-transformed percent local forestation (“exposure”) in streams, using EPA data from the
Mid-Atlantic Highlands region of the eastern United States during the years1993–1996. The true exposure
result is based on422locations at which both the exposure and outcome data are available. The predicted
exposure results are based on outcomes and predicted exposures at157locations for which exposure data
are not available, with the other422 locations used to fit the exposure model. The model allows for

spatially correlatedoutcomes

N β̂X SE
True exposure 422 −0.346 0.025
Predicted exposure, no correction 157 −0.390 0.105
Predicted exposure, partial parametric bootstrap 157−0.390 0.103
Predicted exposure, parameter bootstrap 157−0.388 0.115
Predicted exposure, parametric bootstrap 157 −0.397 0.111

implications for the computational burden of the parametric bootstrap and the validity of the parameter
bootstrap.

In the universal kriging model considered here with 450 exposure monitors, the parametric bootstrap is
marginally feasible, requiring approximately 1 h of computing time for 100 bootstrap samples (compared
to less than 5 min for the parameter bootstrap). One practical compromise is to use the parameter bootstrap
with a larger number of bootstrap samples as the primary correction and to validate it with the parametric
bootstrap using a limited number of samples. In applications where the exposure model is more complex
(e.g. the spatiotemporal air pollution model described bySzpiroand others, 2010), a single optimization
can take on the order of an hour so the parameter bootstrap’s computational advantage becomes even more
important.

We compared our bootstrap methods to 2 recently proposed alternatives (Gryparisand others, 2009;
Madsenand others, 2008). Regression calibration is incompatible with the theoretical properties of the
measurement error, and it results in much larger SEs than any of the other alternatives. Joint estimation
by maximum likelihood performed consistently well, even with a misspecified exposure model and re-
sulted in somewhat smaller SEs than bootstrap methods. However, asGryparisand others(2009) point
out, the joint estimation methodology can be extremely computationally intensive and can lead to spu-
rious feedback into the exposure when there are outliers or misspecification in the outcome model. It is
also difficult to fit a joint model with spatial correlation in the outcomes, due to the challenge in distin-
guishing this correlation from correlation in the exposure. The parameter bootstrap is a computationally
efficient alternative that works well in a wide range of settings, and further research comparing it to
the joint modeling approach is needed to determine which is preferable for problems where both are
feasible.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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